The transition from complex craters to multi-ring basins on the Moon: Quantitative geometric properties from Lunar Reconnaissance Orbiter Lunar Orbiter Laser
نویسندگان
چکیده
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. [1] The morphologic transition from complex impact craters, to peak-ring basins, and to multi-ring basins has been well-documented for decades. Less clear has been the morphometric characteristics of these landforms due to their large size and the lack of global high-resolution topography data. We use data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft to derive the morphometric characteristics of impact basins on the Moon, assess the trends, and interpret the processes involved in the observed morphologic transitions. We first developed a new technique for measuring and calculating the geometric/ morphometric properties of impact basins on the Moon. This new method meets a number of criteria that are important for consideration in any topographic analysis of crater landforms (e.g., multiple data points, complete range of azimuths, systematic, reproducible analysis techniques, avoiding effects of post-event processes, robustness with respect to the statistical techniques). The resulting data more completely capture the azimuthal variation in topography that is characteristic of large impact structures. These new calculations extend the well-defined geometric trends for simple and complex craters out to basin-sized structures. Several new geometric trends for peak-ring basins are observed. Basin depth: A factor of two reduction in the depth to diameter (d/D r) ratio in the transition from complex craters to peak-ring basins may be characterized by a steeper trend than known previously. The d/D r ratio for peak-ring basins decreases with rim-crest diameter, which may be due to a non-proportional change in excavation cavity growth or scaling, as may occur in the simple to complex transition, or increased magnitude of floor uplift associated with peak-ring formation. Wall height, width, and slope: Wall height and width increase with increasing rim-crest diameter, while wall slope decreases; decreasing ratios of wall width to radius and wall height to depth may reflect burial of wall slump block toes by impact melt redistribution during transient cavity collapse. Melt expulsion from the central basin may help to explain the observed increase in floor height to depth ratio; such central depressions are seen within the largest peak-ring basins. Peak-ring height: Heights of peak rings increase …
منابع مشابه
The transition from complex craters to multi-ring basins on the Moon: Quantitative geometric properties from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter (LOLA) data
[1] The morphologic transition from complex impact craters, to peak-ring basins, and to multi-ring basins has been well-documented for decades. Less clear has been the morphometric characteristics of these landforms due to their large size and the lack of global high-resolution topography data. We use data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance...
متن کاملLunar impact basins: Stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data
[1] Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the s...
متن کاملGlobal surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter
[1] The acquisition of new global elevation data from the Lunar Orbiter Laser Altimeter, carried on the Lunar Reconnaissance Orbiter, permits quantification of the surface roughness properties of the Moon at unprecedented scales and resolution. We map lunar surface roughness using a range of parameters: median absolute slope, both directional (along‐track) and bidirectional (in two dimensions);...
متن کاملThe transition from complex crater to peak-ring basin on the Moon: New observations from the Lunar Orbiter Laser Altimeter (LOLA) instrument
Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and...
متن کاملHow Old Are Small Lunar Craters ? - a Depth-to-diameter Ratio Based Analyis
Introduction: In contrast to the larger craters (D > 10km) and basins which shaped the baseline morphology of the Moon, small lunar craters (SLC) continue to form and modify the local topography of the Moon. SLCs form on and around larger craters and basins, are the most populous impact features on the surface but also the least studied topographic data was available only for larger craters unt...
متن کامل